
Precision Theming
Leveraging modern technologies for the

next generation of Drupal sites

Agenda
● Theming and the JavaScript Renaissance

● Code Splitting and Drupal Precision Asset Loading (DruPAL)

● Why Drupal and ReactJS/Angular are Bromigos

The JavaScript Renaissance

Springtime, for JavaScript, and Web Apps!

Early 90’s Present
Day

● Alerts
● Form Validation
● Simple

Animations

● jQuery
● Dom Manipulation
● Simple Interactive

Components ● First frameworks
● Single page apps
● AJAX

● JS breaks free of the
browser

● Full Stack JS
● Build Systems

What?!
JavaScript is evolving!

JavaScript is everywhere…
so why not part of your Drupal theme?

What would that even look like?

We think it looks pretty sweet!

Static Folder
(Encapsulates all front end assets)

Templates Folder
(Encapsulates server-side templates)

Drupal Configuration
(Required by Theme/Module)

Sweet Templates Folder

Sweet Static Directory

Source Folder
(Uncompiled assets)

Packages

Dist Folder
(Compiled assets)

Let’s talk benefits
● Better folder structure => Faster development and easier maintainability

● YOL[L/S] - You Obviously Love [LESS/SASS]

● Hate older browsers? Use autoprefixer, compatible minification, etc.

● Finely tuned, precise control of asset build pipeline

● Keep your sanity! Breakout JS files however you want and include with RequireJS,
Browserify, Webpack, etc.

● Accelerate styling with watch scripts and livereload/hot reloading

...and so much more

Code Splitting and DruPAL

Here’s what you’re doing now...

WWOWS?
(What would Obi-Wan say?)

Here’s what you’re doing now...
Only Imperial
Stormtroopers are
so precise.

No one wants to be an Imperial Stormtrooper.

What you gonna do with all that JS?
● Firstly, it is a LOT more network requests for each page load.

● The browser also has to run through all of it and execute any immediate
functionality.

● After that...basically nothing. Most of it won’t be used except on a few pages.

● So we’re essentially just increasing payload size and slowing down rendering?

What you gonna do with all that JS?
● Firstly, it is a LOT more network requests for each page load.

● The browser also has to run through all of it and execute any immediate
functionality.

● After that...basically nothing. Most of it won’t be used except on a few pages.

● So we’re essentially just increasing payload size and slowing down rendering?

YUUUUUPPPPPPP!!!!!

Let’s be a bit more precise, shall we?

Faster page loads in two simple steps:

● Step 1 - Use gulp/grunt and browserify or webpack to create page specific JS
files (known as code splitting).

● Step 2 - Utilize the `preprocess_page` hook in your theme to load only the JS
files necessary.

Step 1 - Page specific bundles (Code Splitting)

Step 2 - Precision Asset Loading

ahhh, that’s better!

ahhh, that’s better!

Just like bulls-eyeing womp rats back home in my T-16!

Be a Drupal Jedi.
Use code splitting and DruPAL.

Drupal React

What’s the big idea?

A JavaScript library for building user interfaces

Wait. JavaScript and markup...together?
 What does that even look like?

Anatomy of a React Component

Lifecycle Methods

Dependencies

Event Handlers

Render Function

That can’t be a good idea.
● Doesn’t that seem like mixing business logic and presentation logic? And isn’t

that generally a terrible idea?

● On today’s web, presentation is not just styling...it’s user interaction logic as
well.

● This makes it super easy to determine a control’s behaviour. (No searching
through endless jQuery code)

● Plus, any front-end business logic is actually encapsulated is separate classes.

Anatomy of a React Component

Lifecycle Methods

Dependencies

Event Handlers

Render Function

Anatomy of a React Component

Call to Business Logic

Business Logic Layers

Seems cool…but why should I use it for my Drupal project?

● Just the UI layer - React is great at managing interactive views, leaving most/all
of the business logic to your Drupal project.

● Component-based development.

● Super easy to tie into template files.
○ Just mounts to an existing DOM node

● Easy to understand and predictable behaviour, broken out logically into files.

● Super high performance, primarily by minimizing DOM updates which is
awesome for mobile.

What does the future hold?

Progressively Decoupled Blocks

● Rewrite for Drupal 8 of the framework developed for weather.com

● Goal is to allow custom blocks to be written in ReactJS or Angular2

● Developers would not need to be intimately familiar with Drupal

● Allow for “progressive” decoupling - taking advantage of all of Drupal’s

awesome features while leveraging the capabilties of modern JS libraries

● On drupal.org: https://www.drupal.org/sandbox/mrjmd/2664138

● On GitHub: https://github.com/mrjmd/decoupled_blocks

https://www.drupal.org/sandbox/mrjmd/2664138
https://github.com/mrjmd/decoupled_blocks

Wrap up
● There are ton of JavaScript libraries and tools out there - Use them!

● DruPAL gives you the power to dynamically add scripts. Use it, destroy
excessive JS load times, and be a Drupal Jedi.

● Always use the right tool for the right job - ReactJS is a great tool for giving +10
interactivity to CMS-generated page.

● There is some really amazing stuff happening right now - JS and Drupal
developers can work together to build incredible things.

Drew Trafton
Bowst Digital

dtraft on drupal.org
drew@bowst.com

mailto:drew@bowst.com
mailto:drew@bowst.com

Fin
Questions?

